Introduction to Hot Stamping and Trends

By
Dr. Eren Billur, Post-doctoral Researcher
and
Dr. Taylan Altan, Director and Professor

Presented at ESI Hot Forming Die Engineering Seminar
October 15th, 2013

Center for Precision Forming (CPF)

www.cpforming.org / www.ercnsm.org

© Copyright Center for Precision Forming (CPF). All Rights Reserved.
CPF is supported by NSF and 16 member companies, interested in metal forming.
CPF – Current Projects

- Material Characterization
- Friction / Lubrication
- Process Simulation / Forming Al & AHSS
- Die Wear in Forming AHSS
- Edge Quality in Blanking / Shearing
- Hot Stamping of UHSS
- Servo Drive Presses and Hydraulic Cushions
Crashworthiness

Crumple Zone

Passenger Zone

Crumple Zone

Images from: media.Daimler.com
Crashworthiness

Passenger Zone

Crumple Zone

A-pillars

Roof rail

B-pillars

Door beams

Intrusion Resistance
Ultra High Strength

Absorbing Energy
High Strength + Elongation

Ref: Hilfrich 2008.
Summary of Hot Stamping

- Mild Steels
- Conventional High Strength Steels
- Advanced High Strength Steels
- 2nd Generation AHSS
- Aluminum Alloys

Higher Press Forces

Better Formability

Ultimate Tensile Strength (MPa)

Total Elongation (%)

- IF
- Mild
- BH
- CMn
- Al
- HSLA
- TRIP
- DP, CP
- MART
- PHS
- L-IP
- Aust. SS
- TWIP
Summary of Hot Stamping

- Specific Strength (MPa/(kg/m³))
- Total Elongation (%)

- Mild Steels
- Conventional High Strength Steels
- Advanced High Strength Steels
- 2nd Generation AHSS
- Aluminum Alloys

- Lightweight Potential for Energy Absorption
- Lightweight Potential for Intrusion Resistance
- Higher Springback

- IF
- Aust. SS
- TWIP
- L-IP
- BH
- CMn
- TRIP
- HSLA
- DP, CP
- MART
- PHS

- Lightweight Potential for Intrusion Resistance
- Higher Springback
Summary of Hot Stamping

- Mn-B Alloied steel (as delivered): Ferrite & Pearlite
- Heated >950°C: Austenite
- 3-5 min.s in Furnace
- Quenched in the die >27°C/s
- Quenched Martensite
- Indirect Process:
- Direct Process:
Mass % of hot stamped steel in BIW

- Volvo XC90 20%
- Volvo XC90 44%
- VW Passat 19%
- VW Golf VII 28%
- SAAB 9000 7%

Hot Stamping - Trends

Parts per year (in millions)

- Year 1987: 3 million per year (1987)
- Year 1997: 8 million per year (1997)
- Year 2007: 95 million per year (2007)
- Year 2013: >20 Parts/Vehicle

- 4 Parts/Vehicle
- 6 Parts/Vehicle
- 8-10 Parts/Vehicle
- 210+ lines around the world +55 planned

Hot Stamping - Trends

Ref: Macek 2006, Image from: IIHS.
Hot Stamping - Trends

Tailor Rolled Blanks
Tailor Welded Blanks
Tailored Hot Stamping

HSLA 340 (50 ksi)
22MnB5
1500 MPa (215 ksi)

Hot Stamping - Trends

Tailored Heating (Austenitizing)
Tailored Quenching
Post Tempering

Hot Stamping - Trends
Our simulations aim to predict the final properties of hot stamped components:

1) Presence of defects: cracks, wrinkles or local necking,
2) Hardness distribution (both in uniform and in tailored parts),
3) Cooling channel analysis,
4) Distortion of the final part.
Microstructure Evolution

Mechanical Field
- Mechanical material properties,
- Volume change due to phase transformation.

Thermal Field
- Thermal material properties,
- Latent heat due to phase transformation.

Fluid Mechanics
- Heat transfer to the coolant medium.

Heat generation due to plastic deformation.

Thermal expansion.

Phase transformation depends on stress and strain.

Microstructure depends on temperature.

Ref: Åkerström 2006, Porzner 2012.
Finite Element Simulation of Hot Stamping

<table>
<thead>
<tr>
<th></th>
<th>Gravity</th>
<th>Holding</th>
<th>Forming</th>
<th>Die Quenching</th>
<th>Springback</th>
<th>Air Quenching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechanical</td>
<td>Thermal + Mechanical</td>
<td>Thermal + Mechanical</td>
<td>Thermal + Metallurgical</td>
<td>Mechanical</td>
<td>Thermal + Metallurgical</td>
</tr>
</tbody>
</table>

Only needed in tailored parts
Crack prediction in a Side Member Reinforcement

Colors other than gray: Thinning >20%.
Predicting Defects

Heated Dies \((T_i = 450\,^\circ C)\)

Cooled Dies \((T_i = 20\,^\circ C)\)

Blank \((T_i = 850\,^\circ C)\)
Predicting Defects

Crack / wrinkle prediction in a tailored part

With one-piece blankholder

20 kN

Crack
Wrinkles in the soft area
Non-symmetric draw-in
Hardness Distribution

Die Quenching Optimization

Martensite phase fraction

- Min = 0.00
- Max = 1.00
- Values: 0.14, 0.00, 1.00, 0.85, 0.71, 0.57, 0.42, 0.28

4 seconds die quenching

10 seconds die quenching
Hardness Distribution

Air Quenching Stage

Ref: Shapiro 2009.
Results

Hardened zone:
- 485 – 515 HV
- 1500 – 1590 MPa
 (~220 – 230 ksi)

Soft zone:
- 310 – 330 HV
- 920 – 1020 MPa
 (~135 – 150 ksi)

Literature:
[George 2011], 400°C dies = 790-840 MPa
[Feuser 2011], 450°C dies = ~850 MPa
Cooling Channel Analysis

Cooling channel performance

1.3 mm 22MnB5 “roof rail”
Mass produced for a European car.
Cooling Channel Analysis

Cooling channel performance – tailored part

1.2 mm 22MnB5 “B-pillar”
Ongoing work: Distortion in Tailored Parts

Ref: Porzner 2012.
Summary and Conclusions

Several case studies were used to develop, calibrate and validate material models, conversion factors and methods to predict:

1) Defects (cracks, wrinkles, local necks),
2) Vickers hardness, yield and ultimate tensile strengths,
3) Cooling channel / heating cartridge performance,
4) Distortion in a non-uniform part.
1) New materials with even higher strength: More lightweight potential and increased productivity.

2) New coatings: better corrosion properties and friction conditions.

3) New heating, forming and quenching methods to improve productivity.

High Strength (USIBOR 2000, MBW1900, HPF 2000)

22MnB5 (USIBOR 1500, MBW1500, HPF1470)

High Elongation (DUCTIBOR 500, MBW500)

Competition: DP, TRIP, TWIP, and 3gAHS Steels with high YS and UTS.
As of September 2013:

- 15 CPF Reports (Literature review and FE simulations), (5 in the last 6 months) [confidential to members],
- 6 Stamping Journal R&D Updates (+1 more in progress),
- 6 Conference Proceedings (+1 more submitted),
- 1 Book Chapter in “Sheet Metal Forming: Vol 2: Processes and Applications”, (see next slide),
- And a new “Hot Stamping” book in progress!
Questions / Comments?

For more information, please contact:
Dr. Eren Billur (billur.1@osu.edu), Ph 614-292-1785
Dr. Taylan Altan (altan.1@osu.edu), Ph-614-292-5063

Center for Precision Forming –CPF (www.cpforming.org)
339 Baker Systems, 1971 Neil Ave,
Columbus, OH-43210

Non-proprietary information can be found at web sites:
www.cpforming.org
www.ercns.org

References can be sent upon request.